Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.
Fujifilm’s Linear Tape-Open (LTO) Ultrium 6 is the first in the world produced with Fujifilm’s core NANOCUBIC technology. The Fujifilm LTO Ultrium 6 data cartridge offers a super high native/compressed storage capacity of 2.5/6.25TB by recording 2,176 data tracks within 1.265mm tape width. With the utilization of multi-channel recording technology, LTO 6 feature railway/compressed transfer rates of up to 160/400MB per second.

High Capacity and Transfer Rates
Fujifilm’s NANOCUBIC technology has enabled LTO Ultrium 6 to achieve a native/compressed capacity of 2.5/6.25TB by recording 2,176 data tracks within 1.265mm tape width. With the utilization of multi-channel recording technology, LTO 6 feature railway/compressed transfer rates of up to 160/400MB per second.

Improvement in **NANOCUBIC Technology:**
For LTO Ultrium 6 development, Fujifilm has further advanced the NANOCUBIC technology with the following key technologies and has successfully achieved a higher recording density.

1. Development of finer metal particles (70% of the size of LTO Ultrium 5)
2. Developed uniform particle dispersion technology by applying high-dispersed binder technology
3. Advanced nano-coating technology was improved to achieve a smoother and even thinner magnetic tape resulting in a significant decrease in tape surface defects.

New Reel Design
As the tape length increases, there is a tendency of increased pressure on the hub with the potential risk of causing hub deformation. This may lead to potential problems, such as tape edge damage or other physical anomalies. In order to avoid such hub deformation, Fujifilm has strengthened the hub structure by applying a new design with new materials. As a result, Fujifilm has successfully achieved both taping stability in the drive and a highly reliable archival life expectancy.

Environmentally Friendly
BFR (brominated flame retardants) have been fully eliminated from all LTO 6 mechanical parts in order to become more environmentally friendly.

Barium Ferrite Technology
Barium Ferrite is a new type of magnetic particle which can be greatly reduced in size to improve recording density without magnetic signal loss. Barium Ferrite can maintain critical magnetic properties such as essentially frequency characteristics and lower noise even with a smaller particle size, resulting in the LTO Ultrium 6 cartridge having higher capacity compared to past generations of LTO cartridges.

Barium Ferrite is chemically stable (already oxidized) and does not get easily demagnetized by outside energy interference. Therefore, magnetic tape using Barium Ferrite can achieve a long archival life of more than 30 years based upon Fujifilm’s accelerated life tests. With better frequency characteristics than metal particles, Barium Ferrite has a significantly increased margin of recording capability even when the ability of the drive head has diminished after repeated use.

Fujifilm’s Linear Tape-Open (LTO) Ultrium 6 is the first in the world produced with Fujifilm’s core NANOCUBIC technology.

Barium Ferrite

- Magnetic particles using Fujifilm’s core NANOCUBIC technology.
- The Fujifilm LTO Ultrium 6 data cartridge offers a super high native/compressed storage capacity of 2.5/6.25TB by recording 2,176 data tracks within 1.265mm tape width.
- With the utilization of multi-channel recording technology, LTO 6 feature railway/compressed transfer rates of up to 160/400MB per second.

NANOCUBIC Technology:
Fujifilm has continuously improved its own technology by applying high-dispersed binder technology and developing advanced nano-coating technology. Fujifilm has successfully achieved both taping stability in the drive and a highly reliable archival life expectancy.

New Reel Design:
As the tape length increases, there is a tendency of increased pressure on the hub with the potential risk of causing hub deformation. This may lead to potential problems, such as tape edge damage or other physical anomalies. In order to avoid such hub deformation, Fujifilm has strengthened the hub structure by applying a new design with new materials. As a result, Fujifilm has successfully achieved both taping stability in the drive and a highly reliable archival life expectancy.

Environmentally Friendly:
BFR (brominated flame retardants) have been fully eliminated from all LTO 6 mechanical parts in order to become more environmentally friendly.

Barium Ferrite Technology

- Magnetic particles using Fujifilm’s core NANOCUBIC technology.
- The Fujifilm LTO Ultrium 6 data cartridge offers a super high native/compressed storage capacity of 2.5/6.25TB by recording 2,176 data tracks within 1.265mm tape width. With the utilization of multi-channel recording technology, LTO 6 feature railway/compressed transfer rates of up to 160/400MB per second.

Improvement in **NANOCUBIC Technology:**
For LTO Ultrium 6 development, Fujifilm has further advanced the NANOCUBIC technology with the following key technologies and has successfully achieved a higher recording density.

1. Development of finer metal particles (70% of the size of LTO Ultrium 5)
2. Developed uniform particle dispersion technology by applying high-dispersed binder technology
3. Advanced nano-coating technology was improved to achieve a smoother and even thinner magnetic tape resulting in a significant decrease in tape surface defects.

New Reel Design
As the tape length increases, there is a tendency of increased pressure on the hub with the potential risk of causing hub deformation. This may lead to potential problems, such as tape edge damage or other physical anomalies. In order to avoid such hub deformation, Fujifilm has strengthened the hub structure by applying a new design with new materials. As a result, Fujifilm has successfully achieved both taping stability in the drive and a highly reliable archival life expectancy.

Environmentally Friendly
BFR (brominated flame retardants) have been fully eliminated from all LTO 6 mechanical parts in order to become more environmentally friendly.

Fujifilm’s Linear Tape-Open (LTO) Ultrium 6 is the first in the world produced with Fujifilm’s core NANOCUBIC technology.

- Fujifilm’s core NANOCUBIC technology has enabled LTO Ultrium 6 to achieve a super high native/compressed storage capacity of 2.5/6.25TB by recording 2,176 data tracks within 1.265mm tape width.
- With the utilization of multi-channel recording technology, LTO 6 feature railway/compressed transfer rates of up to 160/400MB per second.

Improvement in **NANOCUBIC Technology:**
For LTO Ultrium 6 development, Fujifilm has further advanced the NANOCUBIC technology with the following key technologies and has successfully achieved a higher recording density.

1. Development of finer metal particles (70% of the size of LTO Ultrium 5)
2. Developed uniform particle dispersion technology by applying high-dispersed binder technology
3. Advanced nano-coating technology was improved to achieve a smoother and even thinner magnetic tape resulting in a significant decrease in tape surface defects.

New Reel Design
As the tape length increases, there is a tendency of increased pressure on the hub with the potential risk of causing hub deformation. This may lead to potential problems, such as tape edge damage or other physical anomalies. In order to avoid such hub deformation, Fujifilm has strengthened the hub structure by applying a new design with new materials. As a result, Fujifilm has successfully achieved both taping stability in the drive and a highly reliable archival life expectancy.

Environmentally Friendly
BFR (brominated flame retardants) have been fully eliminated from all LTO 6 mechanical parts in order to become more environmentally friendly.